General Adaptive Neighborhood Image Processing. Part II: Practical Applications Issues
نویسندگان
چکیده
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyzing criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with the physical and/or physiological settings of the image to be processed, using general linear image processing frameworks. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting morphological operators perform a really spatiallyadaptive image processing and notably, in several important and practical cases, are connected, which is a great advantage compared to the usual ones that fail to this property. Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic Image Processing framework and with the ’contrast’ criterion are shown through practical application examples.
منابع مشابه
General Adaptive Neighborhood Image Processing Part II: Practical Application Examples
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyz...
متن کاملLogarithmic Adaptive Neighborhood Image Processing (LANIP): Introduction, Connections to Human Brightness Perception, and Application Issues
A new framework for image representation, processing, and analysis is introduced and exposed through practical applications. The proposed approach is called logarithmic adaptive neighborhood image processing (LANIP) since it is based on the logarithmic image processing (LIP) and on the general adaptive neighborhood image processing (GANIP) approaches, that allow several intensity and spatial pr...
متن کاملGeneral Adaptive Neighborhood Image Processing for Biomedical Applications
In biomedical imaging, the image processing techniques using spatially invariant transformations, with fixed operational windows, give efficient and compact computing structures, with the conventional separation between data and operations. Nevertheless, these operators have several strong drawbacks, such as removing significant details, changing some meaningful parts of large objects, and crea...
متن کاملLocal adaptivity to variable smoothness for exemplar-based image denoising and representation
A novel adaptive and exemplar-based approach is proposed for image restoration and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. The main idea is to associate with each pixel the weighted sum of data points within an adaptive neighborhood. This method is general and can be applied under the assumptio...
متن کاملData hiding in image and video .I. Fundamental issues and solutions
In this Part I of a two-part paper, we address a number of fundamental issues of data hiding in image and video and propose general solutions to them. We begin with a review of two major types of embedding, based on which we propose a new multilevel embedding framework to allow the amount of extractable data to be adaptive according to the actual noise condition. We then study the issues of hid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017